Initial commit 1
47
.gitignore
vendored
|
@ -1,9 +1,13 @@
|
|||
<<<<<<< HEAD
|
||||
# ---> Python
|
||||
=======
|
||||
>>>>>>> 3b78ed2 (Initial commit 1)
|
||||
# Byte-compiled / optimized / DLL files
|
||||
__pycache__/
|
||||
*.py[cod]
|
||||
*$py.class
|
||||
|
||||
<<<<<<< HEAD
|
||||
# C extensions
|
||||
*.so
|
||||
|
||||
|
@ -162,3 +166,46 @@ cython_debug/
|
|||
# option (not recommended) you can uncomment the following to ignore the entire idea folder.
|
||||
#.idea/
|
||||
|
||||
=======
|
||||
# Virtual environments
|
||||
venv/
|
||||
env/
|
||||
.venv/
|
||||
.python-version
|
||||
|
||||
# Distribution / packaging
|
||||
build/
|
||||
dist/
|
||||
*.egg-info/
|
||||
.eggs/
|
||||
|
||||
# Logs and local settings
|
||||
*.log
|
||||
*.env
|
||||
.envrc
|
||||
|
||||
# Jupyter Notebook checkpoints
|
||||
.ipynb_checkpoints/
|
||||
|
||||
# MyPy cache
|
||||
.mypy_cache/
|
||||
|
||||
# PyTest cache
|
||||
.pytest_cache/
|
||||
|
||||
# Coverage reports
|
||||
htmlcov/
|
||||
.coverage
|
||||
.coverage.*
|
||||
.cache
|
||||
|
||||
# IDE and editor files
|
||||
.vscode/
|
||||
.idea/
|
||||
*.sublime-project
|
||||
*.sublime-workspace
|
||||
|
||||
# macOS and Linux files
|
||||
.DS_Store
|
||||
*.swp
|
||||
>>>>>>> 3b78ed2 (Initial commit 1)
|
||||
|
|
145
README.md
|
@ -1,3 +1,146 @@
|
|||
<<<<<<< HEAD
|
||||
# new-plate
|
||||
|
||||
A real-time helmet violation detection system that identifies motorcycles, detects whether riders are wearing helmets, and reads license plates using YOLO, PaddleOCR, and OpenCV.
|
||||
A real-time helmet violation detection system that identifies motorcycles, detects whether riders are wearing helmets, and reads license plates using YOLO, PaddleOCR, and OpenCV.
|
||||
=======
|
||||
# 🚀 Helmet Violation Detector
|
||||
|
||||
A **real-time helmet violation detection system** that identifies motorcycles, detects whether riders are wearing helmets, and reads license plates using **YOLO, PaddleOCR, and OpenCV**.
|
||||
|
||||
---
|
||||
|
||||
## 📌 Features
|
||||
|
||||
- 🏍️ **Motorcycle Detection** (YOLO-based)
|
||||
- 🎩 **Helmet Detection** (Custom YOLO model)
|
||||
- 🚶 **Person-Motorcycle Association** (using IoU & aspect ratio similarity)
|
||||
- 🔍 **License Plate Recognition** (PaddleOCR)
|
||||
- 🚗 **License Plate Detection** (YOLO-based)
|
||||
- 🎥 **Real-time Camera Processing** (OpenCV)
|
||||
- 📊 **Report Generation in Excel** (OpenPyXL)
|
||||
- 🖥️ **GUI Interface** (PyQt6)
|
||||
|
||||
---
|
||||
|
||||
## 🛠️ Installation
|
||||
|
||||
### 1️⃣ Clone the Repository
|
||||
|
||||
```bash
|
||||
git clone https://github.com/yourusername/helmet-violation-detector.git
|
||||
cd helmet-violation-detector
|
||||
```
|
||||
|
||||
### 2️⃣ Set Up Virtual Environment (Recommended)
|
||||
|
||||
```bash
|
||||
python -m venv venv
|
||||
source venv/bin/activate # On macOS/Linux
|
||||
.\venv\Scripts\activate.bat # On Windows CMD
|
||||
.\venv\Scripts\activate.ps1 # On Powershell
|
||||
```
|
||||
|
||||
### 3️⃣ Install Dependencies
|
||||
|
||||
Ensure you have **Python 3.8+** installed. Then, run:
|
||||
|
||||
```bash
|
||||
pip install -r requirements.txt
|
||||
```
|
||||
|
||||
**🔹 Note:**
|
||||
1. If you face **PaddleOCR-related dependency issues**, make sure to install **paddlepaddle**:
|
||||
|
||||
```bash
|
||||
pip install paddlepaddle
|
||||
```
|
||||
|
||||
2. If you face **Protobuf related issues**, make sure to install correct version of protobuf (4.25.*):
|
||||
|
||||
```bash
|
||||
pip install protobuf==4.25.*
|
||||
```
|
||||
|
||||
---
|
||||
|
||||
|
||||
## 🚀 Usage
|
||||
|
||||
### 🔹 GUI Mode
|
||||
|
||||
To launch the **Helmet Violation Detector GUI**, run:
|
||||
|
||||
```bash
|
||||
python main.py
|
||||
```
|
||||
|
||||
### 🔹 Real-time Camera Detection
|
||||
|
||||
Click **"Start Real-Time Analysis"** in the GUI to process frames from your webcam.
|
||||
|
||||
### 🔹 Processing Images/Videos
|
||||
|
||||
1. Click **"Upload Media"** and select an image or video.
|
||||
2. Click **"Analyze Media"** to process.
|
||||
3. Click **"Create Report"** to generate an **Excel report**.
|
||||
4. Click **"Start Real-Time Mode"** to start/stop **analysis on connected webcam/camera feed**.
|
||||
|
||||
---
|
||||
|
||||
## 📝 Limitations
|
||||
|
||||
- Cannot do excel writes in real time mode , however console outs detected number plates at all times
|
||||
- Model Accuracy depends on presented input source quality and fidelity.
|
||||
- Currently motorcycle to person association is done however,associations for person to helmet is also required.
|
||||
|
||||
---
|
||||
|
||||
## ⚙️ Dependencies
|
||||
|
||||
This project requires:
|
||||
|
||||
- **Python 3.8+**
|
||||
- **YOLO (Ultralytics)**
|
||||
- **PaddleOCR**
|
||||
- **OpenCV**
|
||||
- **Mediapipe**
|
||||
- **PyQt6**
|
||||
- **OpenPyXL (Excel support)**
|
||||
|
||||
You can install them using:
|
||||
|
||||
```bash
|
||||
pip install -r requirements.txt
|
||||
```
|
||||
|
||||
---
|
||||
|
||||
## 📌 Troubleshooting
|
||||
|
||||
### ❓ Facing PaddleOCR Issues?
|
||||
|
||||
If you get errors related to `protobuf` or `paddleocr`, try:
|
||||
|
||||
```bash
|
||||
pip install paddlepaddle
|
||||
```
|
||||
|
||||
or
|
||||
|
||||
```bash
|
||||
pip install protobuf==3.20.*
|
||||
```
|
||||
|
||||
---
|
||||
|
||||
## 📜 License
|
||||
|
||||
This project is licensed under the **Apache 2.0 License**.
|
||||
|
||||
---
|
||||
|
||||
## 👨💻 Author
|
||||
|
||||
Developed by **Bitmutex Technologies** 🚀
|
||||
|
||||
>>>>>>> 3b78ed2 (Initial commit 1)
|
||||
|
|
BIN
input/D9Zw2BFUwAAdRG6.jpg
Normal file
After Width: | Height: | Size: 576 KiB |
BIN
input/images.jpg
Normal file
After Width: | Height: | Size: 13 KiB |
BIN
input/input.jpg
Normal file
After Width: | Height: | Size: 66 KiB |
BIN
input/np4.jpg
Normal file
After Width: | Height: | Size: 155 KiB |
BIN
input/np5.jpg
Normal file
After Width: | Height: | Size: 104 KiB |
BIN
input/np6.jpeg
Normal file
After Width: | Height: | Size: 38 KiB |
BIN
input/test21.jpg
Normal file
After Width: | Height: | Size: 797 KiB |
BIN
input/test3.png
Normal file
After Width: | Height: | Size: 2.7 MiB |
BIN
input/ud.mp4
Normal file
BIN
input/ud1.mp4
Normal file
BIN
input/v11.mp4
Normal file
717
main.py
Normal file
|
@ -0,0 +1,717 @@
|
|||
import os
|
||||
os.environ["PROTOCOL_BUFFERS_PYTHON_IMPLEMENTATION"] = "python" # To run Paddle OCR in python based protobuf implementation as it has dependency conflict with protobuf package
|
||||
|
||||
import cv2
|
||||
import numpy as np
|
||||
import pandas as pd
|
||||
from ultralytics import YOLO
|
||||
from PyQt6.QtWidgets import QApplication, QProgressBar, QLabel, QMenuBar, QMenu,QPushButton, QVBoxLayout, QWidget, QFileDialog, QMessageBox, QGroupBox, QHBoxLayout, QFrame
|
||||
from PyQt6.QtGui import QPixmap,QAction, QImage
|
||||
from PyQt6.QtCore import Qt, QThread, pyqtSignal
|
||||
import mediapipe as mp
|
||||
import time
|
||||
from datetime import datetime
|
||||
from openpyxl import load_workbook
|
||||
from openpyxl.styles import Font, PatternFill, Alignment, Border, Side
|
||||
from paddleocr import PaddleOCR
|
||||
|
||||
|
||||
|
||||
mp_face_detection = mp.solutions.face_detection
|
||||
mp_drawing = mp.solutions.drawing_utils
|
||||
|
||||
IOU_THRESHOLD = 0.2 # Adjust based on your use case
|
||||
BUFFER = 5 # Allows a small buffer for intersection calculation
|
||||
FALLBACK_HEADBOX = 0.2
|
||||
WIOU_THRESHOLD=0.3
|
||||
MP_FACE_MODEL=0
|
||||
MP_MIN_DETECTION_CONFIDENCE=0.5
|
||||
CAMERA_SOURCE = 1 #Webcam / Camera Source REMEMBER WINDOWS HAS WEBCAM ACCESS ISSUES TO PYTHON
|
||||
|
||||
# Load YOLO models
|
||||
motorcycle_model = YOLO("models/yolov8n.pt") # Pretrained COCO model (motorcycles)
|
||||
helmet_model = YOLO("models/helmetYoloV8_25epochs.pt") # Custom helmet detection model
|
||||
plate_model = YOLO("models/license_plate_detector.pt") # Custom license plate detection model
|
||||
|
||||
# Initialize OCR
|
||||
ocr = PaddleOCR(use_angle_cls=True, lang='en') # Angle correction enabled
|
||||
|
||||
# Define Colors
|
||||
COLOR_MOTORCYCLE = (0, 255, 0) # Green
|
||||
COLOR_NO_HELMET = (0, 0, 255) # Red
|
||||
COLOR_LICENSE_PLATE = (0, 0, 255) # Red
|
||||
|
||||
#Report Filepath
|
||||
EXCEL_FILE = "report.xlsx"
|
||||
|
||||
|
||||
|
||||
def get_head_region(image, px1, py1, px2, py2):
|
||||
""" Detects head region using Mediapipe Face Detection instead of assuming 20% height. """
|
||||
with mp_face_detection.FaceDetection(MP_FACE_MODEL, MP_MIN_DETECTION_CONFIDENCE) as face_detection:
|
||||
image_rgb = cv2.cvtColor(image, cv2.COLOR_BGR2RGB)
|
||||
results = face_detection.process(image_rgb)
|
||||
|
||||
if results.detections:
|
||||
for detection in results.detections:
|
||||
bboxC = detection.location_data.relative_bounding_box
|
||||
h, w, _ = image.shape
|
||||
x1, y1, w_box, h_box = (
|
||||
int(bboxC.xmin * w), int(bboxC.ymin * h),
|
||||
int(bboxC.width * w), int(bboxC.height * h)
|
||||
)
|
||||
|
||||
# Ensure the detected face is within the person bounding box
|
||||
if x1 >= px1 and x1 + w_box <= px2 and y1 >= py1 and y1 + h_box <= py2:
|
||||
return image[y1:y1 + h_box, x1:x1 + w_box] # Extract face region
|
||||
|
||||
# Fallback: Use the top 20% bounding box if no face is detected
|
||||
head_y1 = py1
|
||||
head_y2 = py1 + int((py2 - py1) * FALLBACK_HEADBOX)
|
||||
return image[head_y1:head_y2, px1:px2]
|
||||
|
||||
def get_center(box):
|
||||
"""Calculate the center of a bounding box."""
|
||||
x1, y1, x2, y2 = box
|
||||
return ((x1 + x2) // 2, (y1 + y2) // 2)
|
||||
|
||||
def iou(box1, box2):
|
||||
"""Compute Intersection over Union (IoU) between two bounding boxes."""
|
||||
x1, y1, x2, y2 = box1
|
||||
x1g, y1g, x2g, y2g = box2
|
||||
|
||||
xi1 = max(x1, x1g) - BUFFER
|
||||
yi1 = max(y1, y1g) - BUFFER
|
||||
xi2 = min(x2, x2g) + BUFFER
|
||||
yi2 = min(y2, y2g) + BUFFER
|
||||
|
||||
inter_area = max(0, xi2 - xi1) * max(0, yi2 - yi1)
|
||||
box1_area = (x2 - x1) * (y2 - y1)
|
||||
box2_area = (x2g - x1g) * (y2g - y1g)
|
||||
|
||||
# union_area = box1_area + box2_area - inter_area
|
||||
union_area = min(box1_area, box2_area) # Normalize based on smaller object
|
||||
return inter_area / union_area if union_area > 0 else 0
|
||||
|
||||
|
||||
def aspect_ratio_similarity(box1, box2):
|
||||
"""Compute Aspect Ratio Similarity (ARS) between two bounding boxes."""
|
||||
x1, y1, x2, y2 = box1
|
||||
x1g, y1g, x2g, y2g = box2
|
||||
|
||||
aspect_ratio1 = (x2 - x1) / (y2 - y1 + 1e-6) # Avoid division by zero
|
||||
aspect_ratio2 = (x2g - x1g) / (y2g - y1g + 1e-6)
|
||||
|
||||
return min(aspect_ratio1, aspect_ratio2) / max(aspect_ratio1, aspect_ratio2) # Ratio similarity
|
||||
|
||||
|
||||
def weighted_iou(box1, box2, alpha=0.7):
|
||||
"""Compute Weighted IoU (WIoU) by combining IoU and Aspect Ratio Similarity."""
|
||||
iou_score = iou(box1, box2)
|
||||
ars_score = aspect_ratio_similarity(box1, box2)
|
||||
|
||||
return alpha * iou_score + (1 - alpha) * ars_score # Weighted combination
|
||||
|
||||
|
||||
|
||||
def associate_persons_with_motorcycles(persons, motorcycles, threshold , alpha=0.7):
|
||||
"""Associate each detected person with the most relevant motorcycle using Weighted IoU."""
|
||||
associations = {}
|
||||
|
||||
for person in persons:
|
||||
best_match = None
|
||||
|
||||
best_score = 0 # WIoU score
|
||||
|
||||
for motorcycle in motorcycles:
|
||||
wiou_score = weighted_iou(person, motorcycle, alpha)
|
||||
if wiou_score > best_score:
|
||||
best_score = wiou_score
|
||||
best_match = motorcycle
|
||||
|
||||
# Apply Weighted IoU threshold
|
||||
if best_match and best_score >= threshold:
|
||||
associations[person] = best_match
|
||||
|
||||
return associations
|
||||
|
||||
|
||||
|
||||
class VideoProcessor(QThread):
|
||||
frame_processed = pyqtSignal(np.ndarray)
|
||||
|
||||
def __init__(self, video_path, parent):
|
||||
super().__init__()
|
||||
self.video_path = video_path
|
||||
self.parent = parent
|
||||
self.running = True
|
||||
|
||||
def run(self):
|
||||
self.parent.process_video(self.video_path)
|
||||
|
||||
|
||||
|
||||
class RealTimeProcessor(QThread):
|
||||
frame_processed = pyqtSignal(np.ndarray)
|
||||
|
||||
def __init__(self, parent):
|
||||
super().__init__()
|
||||
self.parent = parent
|
||||
self.running = True
|
||||
|
||||
def run(self):
|
||||
cap = cv2.VideoCapture(CAMERA_SOURCE) # Open webcam
|
||||
time.sleep(1.000)
|
||||
if not cap.isOpened():
|
||||
print("🔴 Error: Could not open webcam.")
|
||||
return
|
||||
|
||||
while self.running:
|
||||
ret, frame = cap.read()
|
||||
if not ret:
|
||||
print("⚠️ Frame not captured.")
|
||||
break
|
||||
|
||||
# Process the frame
|
||||
processed_frame, _ = self.parent.process_image(frame, is_video=True)
|
||||
|
||||
# Emit signal to update UI
|
||||
self.frame_processed.emit(processed_frame)
|
||||
|
||||
cap.release()
|
||||
|
||||
|
||||
def format_excel(file_path):
|
||||
wb = load_workbook(file_path)
|
||||
ws = wb.active
|
||||
|
||||
# Define styles
|
||||
bold_font = Font(bold=True, color="FFFFFF") # White text
|
||||
header_fill = PatternFill(start_color="4F81BD", end_color="4F81BD", fill_type="solid") # Blue background
|
||||
center_alignment = Alignment(horizontal="center", vertical="center")
|
||||
thin_border = Border(left=Side(style="thin"), right=Side(style="thin"),
|
||||
top=Side(style="thin"), bottom=Side(style="thin"))
|
||||
|
||||
# Apply formatting to header row
|
||||
for col in range(1, ws.max_column + 1):
|
||||
cell = ws.cell(row=1, column=col)
|
||||
cell.font = bold_font
|
||||
cell.fill = header_fill
|
||||
cell.alignment = center_alignment
|
||||
|
||||
# Apply formatting to all cells
|
||||
for row in ws.iter_rows():
|
||||
for cell in row:
|
||||
cell.border = thin_border
|
||||
cell.alignment = center_alignment
|
||||
|
||||
# Auto-adjust column widths
|
||||
for col in ws.columns:
|
||||
max_length = 0
|
||||
col_letter = col[0].column_letter # Get column letter
|
||||
for cell in col:
|
||||
try:
|
||||
if cell.value:
|
||||
max_length = max(max_length, len(str(cell.value)))
|
||||
except:
|
||||
pass
|
||||
ws.column_dimensions[col_letter].width = max_length + 2 # Add extra padding
|
||||
|
||||
# Save the formatted file
|
||||
wb.save(file_path)
|
||||
|
||||
|
||||
class HelmetDetectionApp(QWidget):
|
||||
def __init__(self):
|
||||
super().__init__()
|
||||
# self.image_path = ""
|
||||
self.processed_image_path = ""
|
||||
self.license_plate_text = ""
|
||||
self.media_path = ""
|
||||
|
||||
self.init_ui()
|
||||
|
||||
def init_ui(self):
|
||||
self.setWindowTitle("Helmet Violation Detector")
|
||||
self.setGeometry(200, 200, 950, 700) # More spacious UI
|
||||
|
||||
# Apply a modern dark theme with soft shadows and smooth UI
|
||||
self.setStyleSheet("""
|
||||
QWidget {
|
||||
background-color: #181818;
|
||||
color: #E0E0E0;
|
||||
font-family: 'Arial';
|
||||
}
|
||||
QPushButton {
|
||||
background-color: #1E88E5;
|
||||
color: white;
|
||||
padding: 12px;
|
||||
border-radius: 10px;
|
||||
font-size: 14px;
|
||||
font-weight: bold;
|
||||
transition: all 0.3s;
|
||||
}
|
||||
QPushButton:hover {
|
||||
background-color: #1565C0;
|
||||
transform: scale(1.05);
|
||||
}
|
||||
QPushButton:pressed {
|
||||
background-color: #0D47A1;
|
||||
}
|
||||
QProgressBar {
|
||||
border: 2px solid #1E88E5;
|
||||
border-radius: 5px;
|
||||
text-align: center;
|
||||
background: #222;
|
||||
}
|
||||
QProgressBar::chunk {
|
||||
background-color: #1E88E5;
|
||||
width: 10px;
|
||||
}
|
||||
QLabel {
|
||||
font-size: 14px;
|
||||
font-weight: bold;
|
||||
}
|
||||
QMenuBar {
|
||||
background-color: #333;
|
||||
color: white;
|
||||
padding: 6px;
|
||||
}
|
||||
QMenuBar::item {
|
||||
background-color: transparent;
|
||||
padding: 6px 12px;
|
||||
}
|
||||
QMenuBar::item:selected {
|
||||
background-color: #1565C0;
|
||||
}
|
||||
QMenu {
|
||||
background-color: #444;
|
||||
color: white;
|
||||
border: 1px solid #1565C0;
|
||||
}
|
||||
QMenu::item:selected {
|
||||
background-color: #1565C0;
|
||||
}
|
||||
""")
|
||||
|
||||
layout = QVBoxLayout()
|
||||
|
||||
# 🌟 Top Menu Bar
|
||||
menu_bar = QMenuBar(self)
|
||||
|
||||
# 📂 File Menu
|
||||
file_menu = QMenu("📂 File", self)
|
||||
upload_action = QAction("Upload Media", self)
|
||||
upload_action.triggered.connect(self.upload_media)
|
||||
exit_action = QAction("❌ Exit", self)
|
||||
exit_action.triggered.connect(self.close)
|
||||
|
||||
file_menu.addAction(upload_action)
|
||||
file_menu.addSeparator()
|
||||
file_menu.addAction(exit_action)
|
||||
|
||||
# ❓ Help Menu
|
||||
help_menu = QMenu("❓ Help", self)
|
||||
about_action = QAction("ℹ️ About", self)
|
||||
about_action.triggered.connect(self.show_about)
|
||||
|
||||
help_menu.addAction(about_action)
|
||||
|
||||
# Add Menus to the Bar
|
||||
menu_bar.addMenu(file_menu)
|
||||
menu_bar.addMenu(help_menu)
|
||||
|
||||
layout.setMenuBar(menu_bar) # Attach to main window
|
||||
|
||||
# 🖼️ Image Display Frame
|
||||
self.image_label = QLabel("Upload Media")
|
||||
self.image_label.setAlignment(Qt.AlignmentFlag.AlignCenter)
|
||||
self.image_label.setFrameShape(QFrame.Shape.Box)
|
||||
self.image_label.setFrameShadow(QFrame.Shadow.Sunken)
|
||||
self.image_label.setStyleSheet("""
|
||||
background-color: #222;
|
||||
border: 3px solid #1E88E5;
|
||||
padding: 15px;
|
||||
font-size: 18px;
|
||||
font-weight: bold;
|
||||
color: #BBDEFB;
|
||||
border-radius: 8px;
|
||||
""")
|
||||
layout.addWidget(self.image_label)
|
||||
|
||||
# 📂 File Upload & Processing Section
|
||||
file_group = QGroupBox("📂 Media Controls")
|
||||
file_group.setStyleSheet("QGroupBox { font-weight: bold; font-size: 16px; }")
|
||||
file_layout = QVBoxLayout()
|
||||
|
||||
upload_btn = QPushButton("📂 Upload Media")
|
||||
upload_btn.clicked.connect(self.upload_media)
|
||||
file_layout.addWidget(upload_btn)
|
||||
|
||||
analyze_btn = QPushButton("🔍 Analyze Media")
|
||||
analyze_btn.clicked.connect(self.analyze_media)
|
||||
file_layout.addWidget(analyze_btn)
|
||||
|
||||
report_btn = QPushButton("📊 Create Report")
|
||||
report_btn.clicked.connect(self.create_report)
|
||||
file_layout.addWidget(report_btn)
|
||||
|
||||
file_group.setLayout(file_layout)
|
||||
layout.addWidget(file_group)
|
||||
|
||||
# 🎥 Real-Time Section
|
||||
real_time_group = QGroupBox("🎥 Real-Time Detection")
|
||||
real_time_group.setStyleSheet("QGroupBox { font-weight: bold; font-size: 16px; }")
|
||||
real_time_layout = QHBoxLayout()
|
||||
|
||||
self.real_time_btn = QPushButton("🟢 START Real-Time Analysis")
|
||||
self.real_time_btn.setCheckable(True) # Allow toggling
|
||||
self.real_time_btn.clicked.connect(self.start_real_time)
|
||||
real_time_layout.addWidget(self.real_time_btn)
|
||||
|
||||
real_time_group.setLayout(real_time_layout)
|
||||
layout.addWidget(real_time_group)
|
||||
|
||||
# ⏳ Progress Bar for Video Processing
|
||||
self.progress_bar = QProgressBar(self)
|
||||
self.progress_bar.setTextVisible(True)
|
||||
layout.addWidget(self.progress_bar)
|
||||
|
||||
self.setLayout(layout)
|
||||
|
||||
|
||||
def show_about(self):
|
||||
current_year = datetime.now().year # ✅ Get current year dynamically
|
||||
|
||||
about_msg = QMessageBox(self)
|
||||
about_msg.setWindowTitle("🔍 About Helmet Violation Detector")
|
||||
about_msg.setIcon(QMessageBox.Icon.Information) # ✅ Add an info icon
|
||||
|
||||
# 🎨 Rich HTML Styling for Professional Look
|
||||
about_text = f"""
|
||||
<h2 style='color:#1E88E5; text-align:center;'>Helmet Violation Detector</h2>
|
||||
<p style='text-align:center; font-size:14px; color:#E0E0E0;'>
|
||||
<b>Version:</b> 01.1<br>
|
||||
<b>Developed by:</b> Bitmutex Technologies<br>
|
||||
AI-powered safety monitoring solution
|
||||
</p>
|
||||
<hr>
|
||||
<p style='text-align:center; color:#AAAAAA; font-size:12px;'>
|
||||
© {current_year} Bitmutex Technologies. All rights reserved.
|
||||
</p>
|
||||
"""
|
||||
|
||||
about_msg.setText(about_text) # ✅ Set Rich Text
|
||||
about_msg.setStandardButtons(QMessageBox.StandardButton.Ok) # ✅ Add OK Button
|
||||
about_msg.exec() # ✅ Show the Dialog
|
||||
|
||||
def upload_media(self):
|
||||
file_dialog = QFileDialog()
|
||||
file_path, _ = file_dialog.getOpenFileName(self, "Select Image/Video", "",
|
||||
"Images & Videos (*.png *.jpg *.jpeg *.mp4 *.avi *.mov)")
|
||||
|
||||
if file_path:
|
||||
self.media_path = file_path
|
||||
self.is_video = file_path.lower().endswith((".mp4", ".avi", ".mov"))
|
||||
|
||||
if self.is_video:
|
||||
cap = cv2.VideoCapture(self.media_path)
|
||||
ret, frame = cap.read()
|
||||
cap.release()
|
||||
if ret:
|
||||
self.display_frame(frame)
|
||||
else:
|
||||
pixmap = QPixmap(self.media_path)
|
||||
self.image_label.setPixmap(pixmap.scaled(600, 400))
|
||||
|
||||
|
||||
def analyze_media(self):
|
||||
if not self.media_path:
|
||||
QMessageBox.warning(self, "Warning", "Please upload an image or video first.")
|
||||
return
|
||||
|
||||
if self.is_video:
|
||||
self.video_thread = VideoProcessor(self.media_path, self)
|
||||
self.video_thread.start()
|
||||
else:
|
||||
self.processed_path, self.license_plate_text = self.process_image(self.media_path)
|
||||
if self.processed_path:
|
||||
pixmap = QPixmap(self.processed_path)
|
||||
self.image_label.setPixmap(pixmap.scaled(600, 400))
|
||||
|
||||
|
||||
def process_video(self, video_path, output_folder="output/"):
|
||||
cap = cv2.VideoCapture(video_path)
|
||||
output_video_path = os.path.join(output_folder, "processed_" + os.path.basename(video_path))
|
||||
os.makedirs(output_folder, exist_ok=True)
|
||||
|
||||
fourcc = cv2.VideoWriter_fourcc(*'mp4v')
|
||||
fps = int(cap.get(cv2.CAP_PROP_FPS))
|
||||
width = int(cap.get(cv2.CAP_PROP_FRAME_WIDTH))
|
||||
height = int(cap.get(cv2.CAP_PROP_FRAME_HEIGHT))
|
||||
out = cv2.VideoWriter(output_video_path, fourcc, fps, (width, height))
|
||||
|
||||
frame_count = 0 # Track processed frames
|
||||
total_frames = int(cap.get(cv2.CAP_PROP_FRAME_COUNT)) # Get total frames in video
|
||||
|
||||
while cap.isOpened():
|
||||
ret, frame = cap.read()
|
||||
|
||||
if not ret:
|
||||
print("🔴 No more frames to read. Exiting video processing loop.")
|
||||
break
|
||||
|
||||
frame_count += 1
|
||||
print(f"Processing frame {frame_count} / {total_frames}")
|
||||
|
||||
processed_frame, license_plate_text = self.process_image(frame, is_video=True)
|
||||
|
||||
if processed_frame is None:
|
||||
print("⚠️ Skipping invalid frame.")
|
||||
continue # Skip if processing failed
|
||||
|
||||
out.write(processed_frame) # Write processed frame to output video
|
||||
|
||||
# 🔄 Update progress bar
|
||||
progress = int((frame_count / total_frames) * 100)
|
||||
self.progress_bar.setValue(progress)
|
||||
|
||||
if frame_count >= total_frames:
|
||||
print("✅ Processed all frames. Stopping.")
|
||||
break # Ensure loop stops
|
||||
|
||||
#Save to Excel
|
||||
self.save_to_excel(video_path, output_video_path, license_plate_text)
|
||||
|
||||
|
||||
|
||||
cap.release()
|
||||
out.release()
|
||||
QMessageBox.information(self, "Processing Complete", f"Processed video saved at {output_video_path}")
|
||||
self.display_first_video_frame(output_video_path)
|
||||
|
||||
|
||||
|
||||
def display_frame(self, frame):
|
||||
frame_rgb = cv2.cvtColor(frame, cv2.COLOR_BGR2RGB)
|
||||
h, w, ch = frame_rgb.shape
|
||||
bytes_per_line = ch * w
|
||||
qimage = QImage(frame_rgb.data, w, h, bytes_per_line, QImage.Format.Format_RGB888)
|
||||
pixmap = QPixmap.fromImage(qimage)
|
||||
self.image_label.setPixmap(pixmap.scaled(600, 400))
|
||||
|
||||
def display_first_video_frame(self, video_path):
|
||||
cap = cv2.VideoCapture(video_path)
|
||||
ret, first_frame = cap.read()
|
||||
cap.release()
|
||||
if ret:
|
||||
self.display_frame(first_frame)
|
||||
|
||||
|
||||
|
||||
|
||||
def start_real_time(self):
|
||||
"""Toggle real-time helmet detection from webcam."""
|
||||
if hasattr(self, 'real_time_thread') and self.real_time_thread.isRunning():
|
||||
# 🛑 Stop the real-time thread
|
||||
self.real_time_thread.running = False
|
||||
self.real_time_thread.quit()
|
||||
self.real_time_thread.wait()
|
||||
print("🔴 Stopped real-time detection.")
|
||||
|
||||
# 🔄 Update button to "START"
|
||||
self.real_time_btn.setText("🟢 START Real-Time Analysis")
|
||||
self.real_time_btn.setStyleSheet("background-color: #1E88E5; color: white;")
|
||||
return
|
||||
|
||||
print("✅ Starting real-time detection...")
|
||||
|
||||
# 🟢 Start the real-time detection
|
||||
self.real_time_thread = RealTimeProcessor(self)
|
||||
self.real_time_thread.frame_processed.connect(self.display_frame)
|
||||
self.real_time_thread.start()
|
||||
|
||||
# 🔄 Update button to "STOP"
|
||||
self.real_time_btn.setText("🔴 STOP Real-Time Analysis")
|
||||
self.real_time_btn.setStyleSheet("background-color: #D32F2F; color: white;")
|
||||
|
||||
|
||||
def create_report(self):
|
||||
if not self.license_plate_text:
|
||||
QMessageBox.warning(self, "Warning", "No license plate detected yet!")
|
||||
return
|
||||
|
||||
self.save_to_excel(self.media_path, self.processed_path ,self.license_plate_text)
|
||||
|
||||
os.system(f"start {EXCEL_FILE}") # Open Excel file (Windows)
|
||||
QMessageBox.information(self, "Success", "Report saved and opened successfully.")
|
||||
|
||||
|
||||
def save_to_excel(self, media_path_input, media_path_output, license_plate_text):
|
||||
# Format the paths
|
||||
output_full_path = os.path.abspath(media_path_output)
|
||||
input_full_path = os.path.abspath(media_path_input)
|
||||
|
||||
input_dir = os.path.dirname(input_full_path) # Input path (without filename)
|
||||
input_filename = os.path.basename(input_full_path) # Input filename
|
||||
|
||||
output_dir = os.path.dirname(output_full_path) # Output path (now absolute)
|
||||
output_filename = os.path.basename(output_full_path) # Output filename
|
||||
|
||||
# Check if Excel file exists
|
||||
if os.path.exists(EXCEL_FILE):
|
||||
df = pd.read_excel(EXCEL_FILE, engine="openpyxl")
|
||||
else:
|
||||
df = pd.DataFrame(
|
||||
columns=["Input Path", "Output Path", "Input Filename", "Output Filename", "License Plate Number"])
|
||||
|
||||
# Create new entry
|
||||
new_entry = pd.DataFrame([[input_dir, output_dir, input_filename, output_filename, license_plate_text]],
|
||||
columns=df.columns)
|
||||
|
||||
# Append to DataFrame
|
||||
df = pd.concat([df, new_entry], ignore_index=True)
|
||||
|
||||
# Save to Excel
|
||||
with pd.ExcelWriter(EXCEL_FILE, engine="openpyxl") as writer:
|
||||
df.to_excel(writer, index=False)
|
||||
|
||||
# Format the Excel file
|
||||
format_excel(EXCEL_FILE)
|
||||
|
||||
def process_image(self, image_path, is_video=False, output_folder="output/"):
|
||||
|
||||
# 🖼️ Handle video frames directly
|
||||
if is_video:
|
||||
image = image_path # Already a NumPy array (frame)
|
||||
image_name = "frame.jpg" # Placeholder name for video frames
|
||||
else:
|
||||
image = cv2.imread(image_path)
|
||||
if image is None:
|
||||
print(f"Error: Could not read image {image_path}")
|
||||
return None, ""
|
||||
image_name = os.path.basename(image_path)
|
||||
|
||||
license_plate_text = self.license_plate_text
|
||||
|
||||
# 🏍️ Detect motorcycles and persons
|
||||
motorcycle_results = motorcycle_model(image, conf=0.4, iou=0.5)
|
||||
person_results = motorcycle_model(image, conf=0.3, iou=0.8)
|
||||
|
||||
motorcycles = []
|
||||
persons = []
|
||||
|
||||
# 🚀 Extract motorcycle bounding boxes
|
||||
for result in motorcycle_results:
|
||||
for box in result.boxes:
|
||||
x1, y1, x2, y2 = map(int, box.xyxy[0])
|
||||
cls = int(box.cls[0].item())
|
||||
if cls == 3: # Motorcycle class in COCO
|
||||
motorcycles.append((x1, y1, x2, y2))
|
||||
|
||||
# 🚶 Extract person bounding boxes
|
||||
for result in person_results:
|
||||
for box in result.boxes:
|
||||
x1, y1, x2, y2 = map(int, box.xyxy[0])
|
||||
cls = int(box.cls[0].item())
|
||||
if cls == 0: # Person class in COCO
|
||||
persons.append((x1, y1, x2, y2))
|
||||
|
||||
# 🔗 Associate persons with motorcycles
|
||||
associations = associate_persons_with_motorcycles(persons, motorcycles, WIOU_THRESHOLD)
|
||||
|
||||
detected_plates = {} # Store plates per motorcycle to prevent duplicate processing
|
||||
|
||||
for motorcycle in motorcycles:
|
||||
mx1, my1, mx2, my2 = motorcycle
|
||||
persons_on_motorcycle = [p for p, m in associations.items() if m == motorcycle]
|
||||
|
||||
if not persons_on_motorcycle:
|
||||
print("⚠️ No person found on the motorcycle. Skipping...")
|
||||
continue # 🚫 Skip if no person is found
|
||||
|
||||
# 🏍️ Detect helmet for each person ONCE per motorcycle
|
||||
helmet_status = []
|
||||
for person in persons_on_motorcycle:
|
||||
px1, py1, px2, py2 = person
|
||||
head_roi = get_head_region(image, px1, py1, px2, py2)
|
||||
|
||||
# Detect helmet
|
||||
helmet_results = helmet_model(head_roi)
|
||||
helmet_present = any(helmet_results[0].boxes)
|
||||
helmet_status.append(helmet_present)
|
||||
|
||||
# 🖍️ Draw bounding box for person
|
||||
color = COLOR_MOTORCYCLE if helmet_present else COLOR_NO_HELMET
|
||||
cv2.rectangle(image, (px1, py1), (px2, py2), color, 3)
|
||||
text = "Helmet On" if helmet_present else "No Helmet!"
|
||||
cv2.putText(image, text, (px1, py1 - 10), cv2.FONT_HERSHEY_SIMPLEX, 0.6, color, 2)
|
||||
|
||||
# ✅ 🚫 **Skip if all persons have helmets**
|
||||
if all(helmet_status):
|
||||
print("✅ All persons have helmets. Skipping license plate detection...")
|
||||
continue
|
||||
|
||||
# 🚗 License Plate Detection (only if at least one person has no helmet)
|
||||
if motorcycle in detected_plates:
|
||||
print("⚠️ License plate already detected for this motorcycle. Skipping duplicate detection...")
|
||||
continue # 🚫 Skip duplicate processing
|
||||
|
||||
motorcycle_roi = image[my1:my2, mx1:mx2]
|
||||
plate_results = plate_model(motorcycle_roi)
|
||||
|
||||
if not plate_results or not any(plate_results[0].boxes):
|
||||
print("⚠️ No license plate found for this motorcycle. Skipping...")
|
||||
continue # 🚫 Skip if no plate found
|
||||
|
||||
for plate_result in plate_results:
|
||||
for plate_box in plate_result.boxes:
|
||||
px1, py1, px2, py2 = map(int, plate_box.xyxy[0])
|
||||
plate_roi = motorcycle_roi[py1:py2, px1:px2]
|
||||
|
||||
# Preprocess the license plate region
|
||||
plate_roi_gray = cv2.cvtColor(plate_roi, cv2.COLOR_BGR2GRAY)
|
||||
plate_roi_denoised = cv2.fastNlMeansDenoising(plate_roi_gray, h=10)
|
||||
plate_roi_thresh = cv2.adaptiveThreshold(plate_roi_denoised, 255,
|
||||
cv2.ADAPTIVE_THRESH_GAUSSIAN_C,
|
||||
cv2.THRESH_BINARY, 11, 2)
|
||||
plate_roi_resized = cv2.resize(plate_roi_thresh, None, fx=1.5, fy=1.5,
|
||||
interpolation=cv2.INTER_CUBIC)
|
||||
|
||||
# Convert BGR to RGB (PaddleOCR expects RGB)
|
||||
plate_roi_rgb = cv2.cvtColor(plate_roi_denoised, cv2.COLOR_GRAY2RGB)
|
||||
|
||||
# Perform OCR with PaddleOCR
|
||||
result = ocr.ocr(plate_roi_rgb, cls=True)
|
||||
print("Raw Result:", result)
|
||||
|
||||
# Extract text from PaddleOCR result
|
||||
if result and len(result[0]) > 0:
|
||||
license_plate_text = " ".join([entry[1][0] for entry in result[0]]) # Extract text
|
||||
print("🚗 Detected Plate:", license_plate_text)
|
||||
|
||||
# Store plate once per motorcycle
|
||||
detected_plates[motorcycle] = license_plate_text
|
||||
|
||||
# Draw bounding box and text on original image
|
||||
cv2.rectangle(image, (mx1 + px1, my1 + py1), (mx1 + px2, my1 + py2), COLOR_LICENSE_PLATE, 2)
|
||||
cv2.putText(image, f"Plate: {license_plate_text}", (mx1 + px1, my1 + py1 - 10),
|
||||
cv2.FONT_HERSHEY_SIMPLEX, 0.5, COLOR_LICENSE_PLATE, 2)
|
||||
|
||||
|
||||
# 📁 Save processed image for single-image mode
|
||||
os.makedirs(output_folder, exist_ok=True)
|
||||
output_path = os.path.join(output_folder, f"processed_{image_name}")
|
||||
cv2.imwrite(output_path, image)
|
||||
# 🎥 Return processed frame for video
|
||||
if is_video:
|
||||
return image, license_plate_text
|
||||
else:
|
||||
return output_path, license_plate_text
|
||||
|
||||
|
||||
if __name__ == "__main__":
|
||||
app = QApplication([])
|
||||
window = HelmetDetectionApp()
|
||||
window.show()
|
||||
app.exec()
|
BIN
models/helmetV5_1.pt
Normal file
BIN
models/helmetYoloV8_100epochs.pt
Normal file
BIN
models/helmetYoloV8_25epochs.pt
Normal file
BIN
models/license_plate_detector.pt
Normal file
BIN
models/yolov8n.pt
Normal file
BIN
output/processed_D9Zw2BFUwAAdRG6.jpg
Normal file
After Width: | Height: | Size: 973 KiB |
BIN
output/processed_test21.jpg
Normal file
After Width: | Height: | Size: 351 KiB |