Initial commit 1

This commit is contained in:
Amit Nandi 2025-03-07 23:44:30 +05:30
parent d5c9922e53
commit f44a6266b5
23 changed files with 908 additions and 1 deletions

47
.gitignore vendored
View file

@ -1,9 +1,13 @@
<<<<<<< HEAD
# ---> Python
=======
>>>>>>> 3b78ed2 (Initial commit 1)
# Byte-compiled / optimized / DLL files
__pycache__/
*.py[cod]
*$py.class
<<<<<<< HEAD
# C extensions
*.so
@ -162,3 +166,46 @@ cython_debug/
# option (not recommended) you can uncomment the following to ignore the entire idea folder.
#.idea/
=======
# Virtual environments
venv/
env/
.venv/
.python-version
# Distribution / packaging
build/
dist/
*.egg-info/
.eggs/
# Logs and local settings
*.log
*.env
.envrc
# Jupyter Notebook checkpoints
.ipynb_checkpoints/
# MyPy cache
.mypy_cache/
# PyTest cache
.pytest_cache/
# Coverage reports
htmlcov/
.coverage
.coverage.*
.cache
# IDE and editor files
.vscode/
.idea/
*.sublime-project
*.sublime-workspace
# macOS and Linux files
.DS_Store
*.swp
>>>>>>> 3b78ed2 (Initial commit 1)

145
README.md
View file

@ -1,3 +1,146 @@
<<<<<<< HEAD
# new-plate
A real-time helmet violation detection system that identifies motorcycles, detects whether riders are wearing helmets, and reads license plates using YOLO, PaddleOCR, and OpenCV.
A real-time helmet violation detection system that identifies motorcycles, detects whether riders are wearing helmets, and reads license plates using YOLO, PaddleOCR, and OpenCV.
=======
# 🚀 Helmet Violation Detector
A **real-time helmet violation detection system** that identifies motorcycles, detects whether riders are wearing helmets, and reads license plates using **YOLO, PaddleOCR, and OpenCV**.
---
## 📌 Features
- 🏍️ **Motorcycle Detection** (YOLO-based)
- 🎩 **Helmet Detection** (Custom YOLO model)
- 🚶 **Person-Motorcycle Association** (using IoU & aspect ratio similarity)
- 🔍 **License Plate Recognition** (PaddleOCR)
- 🚗 **License Plate Detection** (YOLO-based)
- 🎥 **Real-time Camera Processing** (OpenCV)
- 📊 **Report Generation in Excel** (OpenPyXL)
- 🖥️ **GUI Interface** (PyQt6)
---
## 🛠️ Installation
### 1⃣ Clone the Repository
```bash
git clone https://github.com/yourusername/helmet-violation-detector.git
cd helmet-violation-detector
```
### 2⃣ Set Up Virtual Environment (Recommended)
```bash
python -m venv venv
source venv/bin/activate # On macOS/Linux
.\venv\Scripts\activate.bat # On Windows CMD
.\venv\Scripts\activate.ps1 # On Powershell
```
### 3⃣ Install Dependencies
Ensure you have **Python 3.8+** installed. Then, run:
```bash
pip install -r requirements.txt
```
**🔹 Note:**
1. If you face **PaddleOCR-related dependency issues**, make sure to install **paddlepaddle**:
```bash
pip install paddlepaddle
```
2. If you face **Protobuf related issues**, make sure to install correct version of protobuf (4.25.*):
```bash
pip install protobuf==4.25.*
```
---
## 🚀 Usage
### 🔹 GUI Mode
To launch the **Helmet Violation Detector GUI**, run:
```bash
python main.py
```
### 🔹 Real-time Camera Detection
Click **"Start Real-Time Analysis"** in the GUI to process frames from your webcam.
### 🔹 Processing Images/Videos
1. Click **"Upload Media"** and select an image or video.
2. Click **"Analyze Media"** to process.
3. Click **"Create Report"** to generate an **Excel report**.
4. Click **"Start Real-Time Mode"** to start/stop **analysis on connected webcam/camera feed**.
---
## 📝 Limitations
- Cannot do excel writes in real time mode , however console outs detected number plates at all times
- Model Accuracy depends on presented input source quality and fidelity.
- Currently motorcycle to person association is done however,associations for person to helmet is also required.
---
## ⚙️ Dependencies
This project requires:
- **Python 3.8+**
- **YOLO (Ultralytics)**
- **PaddleOCR**
- **OpenCV**
- **Mediapipe**
- **PyQt6**
- **OpenPyXL (Excel support)**
You can install them using:
```bash
pip install -r requirements.txt
```
---
## 📌 Troubleshooting
### ❓ Facing PaddleOCR Issues?
If you get errors related to `protobuf` or `paddleocr`, try:
```bash
pip install paddlepaddle
```
or
```bash
pip install protobuf==3.20.*
```
---
## 📜 License
This project is licensed under the **Apache 2.0 License**.
---
## 👨‍💻 Author
Developed by **Bitmutex Technologies** 🚀
>>>>>>> 3b78ed2 (Initial commit 1)

BIN
input/D9Zw2BFUwAAdRG6.jpg Normal file

Binary file not shown.

After

Width:  |  Height:  |  Size: 576 KiB

BIN
input/images.jpg Normal file

Binary file not shown.

After

Width:  |  Height:  |  Size: 13 KiB

BIN
input/input.jpg Normal file

Binary file not shown.

After

Width:  |  Height:  |  Size: 66 KiB

BIN
input/np4.jpg Normal file

Binary file not shown.

After

Width:  |  Height:  |  Size: 155 KiB

BIN
input/np5.jpg Normal file

Binary file not shown.

After

Width:  |  Height:  |  Size: 104 KiB

BIN
input/np6.jpeg Normal file

Binary file not shown.

After

Width:  |  Height:  |  Size: 38 KiB

BIN
input/test21.jpg Normal file

Binary file not shown.

After

Width:  |  Height:  |  Size: 797 KiB

BIN
input/test3.png Normal file

Binary file not shown.

After

Width:  |  Height:  |  Size: 2.7 MiB

BIN
input/ud.mp4 Normal file

Binary file not shown.

BIN
input/ud1.mp4 Normal file

Binary file not shown.

BIN
input/v11.mp4 Normal file

Binary file not shown.

717
main.py Normal file
View file

@ -0,0 +1,717 @@
import os
os.environ["PROTOCOL_BUFFERS_PYTHON_IMPLEMENTATION"] = "python" # To run Paddle OCR in python based protobuf implementation as it has dependency conflict with protobuf package
import cv2
import numpy as np
import pandas as pd
from ultralytics import YOLO
from PyQt6.QtWidgets import QApplication, QProgressBar, QLabel, QMenuBar, QMenu,QPushButton, QVBoxLayout, QWidget, QFileDialog, QMessageBox, QGroupBox, QHBoxLayout, QFrame
from PyQt6.QtGui import QPixmap,QAction, QImage
from PyQt6.QtCore import Qt, QThread, pyqtSignal
import mediapipe as mp
import time
from datetime import datetime
from openpyxl import load_workbook
from openpyxl.styles import Font, PatternFill, Alignment, Border, Side
from paddleocr import PaddleOCR
mp_face_detection = mp.solutions.face_detection
mp_drawing = mp.solutions.drawing_utils
IOU_THRESHOLD = 0.2 # Adjust based on your use case
BUFFER = 5 # Allows a small buffer for intersection calculation
FALLBACK_HEADBOX = 0.2
WIOU_THRESHOLD=0.3
MP_FACE_MODEL=0
MP_MIN_DETECTION_CONFIDENCE=0.5
CAMERA_SOURCE = 1 #Webcam / Camera Source REMEMBER WINDOWS HAS WEBCAM ACCESS ISSUES TO PYTHON
# Load YOLO models
motorcycle_model = YOLO("models/yolov8n.pt") # Pretrained COCO model (motorcycles)
helmet_model = YOLO("models/helmetYoloV8_25epochs.pt") # Custom helmet detection model
plate_model = YOLO("models/license_plate_detector.pt") # Custom license plate detection model
# Initialize OCR
ocr = PaddleOCR(use_angle_cls=True, lang='en') # Angle correction enabled
# Define Colors
COLOR_MOTORCYCLE = (0, 255, 0) # Green
COLOR_NO_HELMET = (0, 0, 255) # Red
COLOR_LICENSE_PLATE = (0, 0, 255) # Red
#Report Filepath
EXCEL_FILE = "report.xlsx"
def get_head_region(image, px1, py1, px2, py2):
""" Detects head region using Mediapipe Face Detection instead of assuming 20% height. """
with mp_face_detection.FaceDetection(MP_FACE_MODEL, MP_MIN_DETECTION_CONFIDENCE) as face_detection:
image_rgb = cv2.cvtColor(image, cv2.COLOR_BGR2RGB)
results = face_detection.process(image_rgb)
if results.detections:
for detection in results.detections:
bboxC = detection.location_data.relative_bounding_box
h, w, _ = image.shape
x1, y1, w_box, h_box = (
int(bboxC.xmin * w), int(bboxC.ymin * h),
int(bboxC.width * w), int(bboxC.height * h)
)
# Ensure the detected face is within the person bounding box
if x1 >= px1 and x1 + w_box <= px2 and y1 >= py1 and y1 + h_box <= py2:
return image[y1:y1 + h_box, x1:x1 + w_box] # Extract face region
# Fallback: Use the top 20% bounding box if no face is detected
head_y1 = py1
head_y2 = py1 + int((py2 - py1) * FALLBACK_HEADBOX)
return image[head_y1:head_y2, px1:px2]
def get_center(box):
"""Calculate the center of a bounding box."""
x1, y1, x2, y2 = box
return ((x1 + x2) // 2, (y1 + y2) // 2)
def iou(box1, box2):
"""Compute Intersection over Union (IoU) between two bounding boxes."""
x1, y1, x2, y2 = box1
x1g, y1g, x2g, y2g = box2
xi1 = max(x1, x1g) - BUFFER
yi1 = max(y1, y1g) - BUFFER
xi2 = min(x2, x2g) + BUFFER
yi2 = min(y2, y2g) + BUFFER
inter_area = max(0, xi2 - xi1) * max(0, yi2 - yi1)
box1_area = (x2 - x1) * (y2 - y1)
box2_area = (x2g - x1g) * (y2g - y1g)
# union_area = box1_area + box2_area - inter_area
union_area = min(box1_area, box2_area) # Normalize based on smaller object
return inter_area / union_area if union_area > 0 else 0
def aspect_ratio_similarity(box1, box2):
"""Compute Aspect Ratio Similarity (ARS) between two bounding boxes."""
x1, y1, x2, y2 = box1
x1g, y1g, x2g, y2g = box2
aspect_ratio1 = (x2 - x1) / (y2 - y1 + 1e-6) # Avoid division by zero
aspect_ratio2 = (x2g - x1g) / (y2g - y1g + 1e-6)
return min(aspect_ratio1, aspect_ratio2) / max(aspect_ratio1, aspect_ratio2) # Ratio similarity
def weighted_iou(box1, box2, alpha=0.7):
"""Compute Weighted IoU (WIoU) by combining IoU and Aspect Ratio Similarity."""
iou_score = iou(box1, box2)
ars_score = aspect_ratio_similarity(box1, box2)
return alpha * iou_score + (1 - alpha) * ars_score # Weighted combination
def associate_persons_with_motorcycles(persons, motorcycles, threshold , alpha=0.7):
"""Associate each detected person with the most relevant motorcycle using Weighted IoU."""
associations = {}
for person in persons:
best_match = None
best_score = 0 # WIoU score
for motorcycle in motorcycles:
wiou_score = weighted_iou(person, motorcycle, alpha)
if wiou_score > best_score:
best_score = wiou_score
best_match = motorcycle
# Apply Weighted IoU threshold
if best_match and best_score >= threshold:
associations[person] = best_match
return associations
class VideoProcessor(QThread):
frame_processed = pyqtSignal(np.ndarray)
def __init__(self, video_path, parent):
super().__init__()
self.video_path = video_path
self.parent = parent
self.running = True
def run(self):
self.parent.process_video(self.video_path)
class RealTimeProcessor(QThread):
frame_processed = pyqtSignal(np.ndarray)
def __init__(self, parent):
super().__init__()
self.parent = parent
self.running = True
def run(self):
cap = cv2.VideoCapture(CAMERA_SOURCE) # Open webcam
time.sleep(1.000)
if not cap.isOpened():
print("🔴 Error: Could not open webcam.")
return
while self.running:
ret, frame = cap.read()
if not ret:
print("⚠️ Frame not captured.")
break
# Process the frame
processed_frame, _ = self.parent.process_image(frame, is_video=True)
# Emit signal to update UI
self.frame_processed.emit(processed_frame)
cap.release()
def format_excel(file_path):
wb = load_workbook(file_path)
ws = wb.active
# Define styles
bold_font = Font(bold=True, color="FFFFFF") # White text
header_fill = PatternFill(start_color="4F81BD", end_color="4F81BD", fill_type="solid") # Blue background
center_alignment = Alignment(horizontal="center", vertical="center")
thin_border = Border(left=Side(style="thin"), right=Side(style="thin"),
top=Side(style="thin"), bottom=Side(style="thin"))
# Apply formatting to header row
for col in range(1, ws.max_column + 1):
cell = ws.cell(row=1, column=col)
cell.font = bold_font
cell.fill = header_fill
cell.alignment = center_alignment
# Apply formatting to all cells
for row in ws.iter_rows():
for cell in row:
cell.border = thin_border
cell.alignment = center_alignment
# Auto-adjust column widths
for col in ws.columns:
max_length = 0
col_letter = col[0].column_letter # Get column letter
for cell in col:
try:
if cell.value:
max_length = max(max_length, len(str(cell.value)))
except:
pass
ws.column_dimensions[col_letter].width = max_length + 2 # Add extra padding
# Save the formatted file
wb.save(file_path)
class HelmetDetectionApp(QWidget):
def __init__(self):
super().__init__()
# self.image_path = ""
self.processed_image_path = ""
self.license_plate_text = ""
self.media_path = ""
self.init_ui()
def init_ui(self):
self.setWindowTitle("Helmet Violation Detector")
self.setGeometry(200, 200, 950, 700) # More spacious UI
# Apply a modern dark theme with soft shadows and smooth UI
self.setStyleSheet("""
QWidget {
background-color: #181818;
color: #E0E0E0;
font-family: 'Arial';
}
QPushButton {
background-color: #1E88E5;
color: white;
padding: 12px;
border-radius: 10px;
font-size: 14px;
font-weight: bold;
transition: all 0.3s;
}
QPushButton:hover {
background-color: #1565C0;
transform: scale(1.05);
}
QPushButton:pressed {
background-color: #0D47A1;
}
QProgressBar {
border: 2px solid #1E88E5;
border-radius: 5px;
text-align: center;
background: #222;
}
QProgressBar::chunk {
background-color: #1E88E5;
width: 10px;
}
QLabel {
font-size: 14px;
font-weight: bold;
}
QMenuBar {
background-color: #333;
color: white;
padding: 6px;
}
QMenuBar::item {
background-color: transparent;
padding: 6px 12px;
}
QMenuBar::item:selected {
background-color: #1565C0;
}
QMenu {
background-color: #444;
color: white;
border: 1px solid #1565C0;
}
QMenu::item:selected {
background-color: #1565C0;
}
""")
layout = QVBoxLayout()
# 🌟 Top Menu Bar
menu_bar = QMenuBar(self)
# 📂 File Menu
file_menu = QMenu("📂 File", self)
upload_action = QAction("Upload Media", self)
upload_action.triggered.connect(self.upload_media)
exit_action = QAction("❌ Exit", self)
exit_action.triggered.connect(self.close)
file_menu.addAction(upload_action)
file_menu.addSeparator()
file_menu.addAction(exit_action)
# ❓ Help Menu
help_menu = QMenu("❓ Help", self)
about_action = QAction(" About", self)
about_action.triggered.connect(self.show_about)
help_menu.addAction(about_action)
# Add Menus to the Bar
menu_bar.addMenu(file_menu)
menu_bar.addMenu(help_menu)
layout.setMenuBar(menu_bar) # Attach to main window
# 🖼️ Image Display Frame
self.image_label = QLabel("Upload Media")
self.image_label.setAlignment(Qt.AlignmentFlag.AlignCenter)
self.image_label.setFrameShape(QFrame.Shape.Box)
self.image_label.setFrameShadow(QFrame.Shadow.Sunken)
self.image_label.setStyleSheet("""
background-color: #222;
border: 3px solid #1E88E5;
padding: 15px;
font-size: 18px;
font-weight: bold;
color: #BBDEFB;
border-radius: 8px;
""")
layout.addWidget(self.image_label)
# 📂 File Upload & Processing Section
file_group = QGroupBox("📂 Media Controls")
file_group.setStyleSheet("QGroupBox { font-weight: bold; font-size: 16px; }")
file_layout = QVBoxLayout()
upload_btn = QPushButton("📂 Upload Media")
upload_btn.clicked.connect(self.upload_media)
file_layout.addWidget(upload_btn)
analyze_btn = QPushButton("🔍 Analyze Media")
analyze_btn.clicked.connect(self.analyze_media)
file_layout.addWidget(analyze_btn)
report_btn = QPushButton("📊 Create Report")
report_btn.clicked.connect(self.create_report)
file_layout.addWidget(report_btn)
file_group.setLayout(file_layout)
layout.addWidget(file_group)
# 🎥 Real-Time Section
real_time_group = QGroupBox("🎥 Real-Time Detection")
real_time_group.setStyleSheet("QGroupBox { font-weight: bold; font-size: 16px; }")
real_time_layout = QHBoxLayout()
self.real_time_btn = QPushButton("🟢 START Real-Time Analysis")
self.real_time_btn.setCheckable(True) # Allow toggling
self.real_time_btn.clicked.connect(self.start_real_time)
real_time_layout.addWidget(self.real_time_btn)
real_time_group.setLayout(real_time_layout)
layout.addWidget(real_time_group)
# ⏳ Progress Bar for Video Processing
self.progress_bar = QProgressBar(self)
self.progress_bar.setTextVisible(True)
layout.addWidget(self.progress_bar)
self.setLayout(layout)
def show_about(self):
current_year = datetime.now().year # ✅ Get current year dynamically
about_msg = QMessageBox(self)
about_msg.setWindowTitle("🔍 About Helmet Violation Detector")
about_msg.setIcon(QMessageBox.Icon.Information) # ✅ Add an info icon
# 🎨 Rich HTML Styling for Professional Look
about_text = f"""
<h2 style='color:#1E88E5; text-align:center;'>Helmet Violation Detector</h2>
<p style='text-align:center; font-size:14px; color:#E0E0E0;'>
<b>Version:</b> 01.1<br>
<b>Developed by:</b> Bitmutex Technologies<br>
AI-powered safety monitoring solution
</p>
<hr>
<p style='text-align:center; color:#AAAAAA; font-size:12px;'>
© {current_year} Bitmutex Technologies. All rights reserved.
</p>
"""
about_msg.setText(about_text) # ✅ Set Rich Text
about_msg.setStandardButtons(QMessageBox.StandardButton.Ok) # ✅ Add OK Button
about_msg.exec() # ✅ Show the Dialog
def upload_media(self):
file_dialog = QFileDialog()
file_path, _ = file_dialog.getOpenFileName(self, "Select Image/Video", "",
"Images & Videos (*.png *.jpg *.jpeg *.mp4 *.avi *.mov)")
if file_path:
self.media_path = file_path
self.is_video = file_path.lower().endswith((".mp4", ".avi", ".mov"))
if self.is_video:
cap = cv2.VideoCapture(self.media_path)
ret, frame = cap.read()
cap.release()
if ret:
self.display_frame(frame)
else:
pixmap = QPixmap(self.media_path)
self.image_label.setPixmap(pixmap.scaled(600, 400))
def analyze_media(self):
if not self.media_path:
QMessageBox.warning(self, "Warning", "Please upload an image or video first.")
return
if self.is_video:
self.video_thread = VideoProcessor(self.media_path, self)
self.video_thread.start()
else:
self.processed_path, self.license_plate_text = self.process_image(self.media_path)
if self.processed_path:
pixmap = QPixmap(self.processed_path)
self.image_label.setPixmap(pixmap.scaled(600, 400))
def process_video(self, video_path, output_folder="output/"):
cap = cv2.VideoCapture(video_path)
output_video_path = os.path.join(output_folder, "processed_" + os.path.basename(video_path))
os.makedirs(output_folder, exist_ok=True)
fourcc = cv2.VideoWriter_fourcc(*'mp4v')
fps = int(cap.get(cv2.CAP_PROP_FPS))
width = int(cap.get(cv2.CAP_PROP_FRAME_WIDTH))
height = int(cap.get(cv2.CAP_PROP_FRAME_HEIGHT))
out = cv2.VideoWriter(output_video_path, fourcc, fps, (width, height))
frame_count = 0 # Track processed frames
total_frames = int(cap.get(cv2.CAP_PROP_FRAME_COUNT)) # Get total frames in video
while cap.isOpened():
ret, frame = cap.read()
if not ret:
print("🔴 No more frames to read. Exiting video processing loop.")
break
frame_count += 1
print(f"Processing frame {frame_count} / {total_frames}")
processed_frame, license_plate_text = self.process_image(frame, is_video=True)
if processed_frame is None:
print("⚠️ Skipping invalid frame.")
continue # Skip if processing failed
out.write(processed_frame) # Write processed frame to output video
# 🔄 Update progress bar
progress = int((frame_count / total_frames) * 100)
self.progress_bar.setValue(progress)
if frame_count >= total_frames:
print("✅ Processed all frames. Stopping.")
break # Ensure loop stops
#Save to Excel
self.save_to_excel(video_path, output_video_path, license_plate_text)
cap.release()
out.release()
QMessageBox.information(self, "Processing Complete", f"Processed video saved at {output_video_path}")
self.display_first_video_frame(output_video_path)
def display_frame(self, frame):
frame_rgb = cv2.cvtColor(frame, cv2.COLOR_BGR2RGB)
h, w, ch = frame_rgb.shape
bytes_per_line = ch * w
qimage = QImage(frame_rgb.data, w, h, bytes_per_line, QImage.Format.Format_RGB888)
pixmap = QPixmap.fromImage(qimage)
self.image_label.setPixmap(pixmap.scaled(600, 400))
def display_first_video_frame(self, video_path):
cap = cv2.VideoCapture(video_path)
ret, first_frame = cap.read()
cap.release()
if ret:
self.display_frame(first_frame)
def start_real_time(self):
"""Toggle real-time helmet detection from webcam."""
if hasattr(self, 'real_time_thread') and self.real_time_thread.isRunning():
# 🛑 Stop the real-time thread
self.real_time_thread.running = False
self.real_time_thread.quit()
self.real_time_thread.wait()
print("🔴 Stopped real-time detection.")
# 🔄 Update button to "START"
self.real_time_btn.setText("🟢 START Real-Time Analysis")
self.real_time_btn.setStyleSheet("background-color: #1E88E5; color: white;")
return
print("✅ Starting real-time detection...")
# 🟢 Start the real-time detection
self.real_time_thread = RealTimeProcessor(self)
self.real_time_thread.frame_processed.connect(self.display_frame)
self.real_time_thread.start()
# 🔄 Update button to "STOP"
self.real_time_btn.setText("🔴 STOP Real-Time Analysis")
self.real_time_btn.setStyleSheet("background-color: #D32F2F; color: white;")
def create_report(self):
if not self.license_plate_text:
QMessageBox.warning(self, "Warning", "No license plate detected yet!")
return
self.save_to_excel(self.media_path, self.processed_path ,self.license_plate_text)
os.system(f"start {EXCEL_FILE}") # Open Excel file (Windows)
QMessageBox.information(self, "Success", "Report saved and opened successfully.")
def save_to_excel(self, media_path_input, media_path_output, license_plate_text):
# Format the paths
output_full_path = os.path.abspath(media_path_output)
input_full_path = os.path.abspath(media_path_input)
input_dir = os.path.dirname(input_full_path) # Input path (without filename)
input_filename = os.path.basename(input_full_path) # Input filename
output_dir = os.path.dirname(output_full_path) # Output path (now absolute)
output_filename = os.path.basename(output_full_path) # Output filename
# Check if Excel file exists
if os.path.exists(EXCEL_FILE):
df = pd.read_excel(EXCEL_FILE, engine="openpyxl")
else:
df = pd.DataFrame(
columns=["Input Path", "Output Path", "Input Filename", "Output Filename", "License Plate Number"])
# Create new entry
new_entry = pd.DataFrame([[input_dir, output_dir, input_filename, output_filename, license_plate_text]],
columns=df.columns)
# Append to DataFrame
df = pd.concat([df, new_entry], ignore_index=True)
# Save to Excel
with pd.ExcelWriter(EXCEL_FILE, engine="openpyxl") as writer:
df.to_excel(writer, index=False)
# Format the Excel file
format_excel(EXCEL_FILE)
def process_image(self, image_path, is_video=False, output_folder="output/"):
# 🖼️ Handle video frames directly
if is_video:
image = image_path # Already a NumPy array (frame)
image_name = "frame.jpg" # Placeholder name for video frames
else:
image = cv2.imread(image_path)
if image is None:
print(f"Error: Could not read image {image_path}")
return None, ""
image_name = os.path.basename(image_path)
license_plate_text = self.license_plate_text
# 🏍️ Detect motorcycles and persons
motorcycle_results = motorcycle_model(image, conf=0.4, iou=0.5)
person_results = motorcycle_model(image, conf=0.3, iou=0.8)
motorcycles = []
persons = []
# 🚀 Extract motorcycle bounding boxes
for result in motorcycle_results:
for box in result.boxes:
x1, y1, x2, y2 = map(int, box.xyxy[0])
cls = int(box.cls[0].item())
if cls == 3: # Motorcycle class in COCO
motorcycles.append((x1, y1, x2, y2))
# 🚶 Extract person bounding boxes
for result in person_results:
for box in result.boxes:
x1, y1, x2, y2 = map(int, box.xyxy[0])
cls = int(box.cls[0].item())
if cls == 0: # Person class in COCO
persons.append((x1, y1, x2, y2))
# 🔗 Associate persons with motorcycles
associations = associate_persons_with_motorcycles(persons, motorcycles, WIOU_THRESHOLD)
detected_plates = {} # Store plates per motorcycle to prevent duplicate processing
for motorcycle in motorcycles:
mx1, my1, mx2, my2 = motorcycle
persons_on_motorcycle = [p for p, m in associations.items() if m == motorcycle]
if not persons_on_motorcycle:
print("⚠️ No person found on the motorcycle. Skipping...")
continue # 🚫 Skip if no person is found
# 🏍️ Detect helmet for each person ONCE per motorcycle
helmet_status = []
for person in persons_on_motorcycle:
px1, py1, px2, py2 = person
head_roi = get_head_region(image, px1, py1, px2, py2)
# Detect helmet
helmet_results = helmet_model(head_roi)
helmet_present = any(helmet_results[0].boxes)
helmet_status.append(helmet_present)
# 🖍️ Draw bounding box for person
color = COLOR_MOTORCYCLE if helmet_present else COLOR_NO_HELMET
cv2.rectangle(image, (px1, py1), (px2, py2), color, 3)
text = "Helmet On" if helmet_present else "No Helmet!"
cv2.putText(image, text, (px1, py1 - 10), cv2.FONT_HERSHEY_SIMPLEX, 0.6, color, 2)
# ✅ 🚫 **Skip if all persons have helmets**
if all(helmet_status):
print("✅ All persons have helmets. Skipping license plate detection...")
continue
# 🚗 License Plate Detection (only if at least one person has no helmet)
if motorcycle in detected_plates:
print("⚠️ License plate already detected for this motorcycle. Skipping duplicate detection...")
continue # 🚫 Skip duplicate processing
motorcycle_roi = image[my1:my2, mx1:mx2]
plate_results = plate_model(motorcycle_roi)
if not plate_results or not any(plate_results[0].boxes):
print("⚠️ No license plate found for this motorcycle. Skipping...")
continue # 🚫 Skip if no plate found
for plate_result in plate_results:
for plate_box in plate_result.boxes:
px1, py1, px2, py2 = map(int, plate_box.xyxy[0])
plate_roi = motorcycle_roi[py1:py2, px1:px2]
# Preprocess the license plate region
plate_roi_gray = cv2.cvtColor(plate_roi, cv2.COLOR_BGR2GRAY)
plate_roi_denoised = cv2.fastNlMeansDenoising(plate_roi_gray, h=10)
plate_roi_thresh = cv2.adaptiveThreshold(plate_roi_denoised, 255,
cv2.ADAPTIVE_THRESH_GAUSSIAN_C,
cv2.THRESH_BINARY, 11, 2)
plate_roi_resized = cv2.resize(plate_roi_thresh, None, fx=1.5, fy=1.5,
interpolation=cv2.INTER_CUBIC)
# Convert BGR to RGB (PaddleOCR expects RGB)
plate_roi_rgb = cv2.cvtColor(plate_roi_denoised, cv2.COLOR_GRAY2RGB)
# Perform OCR with PaddleOCR
result = ocr.ocr(plate_roi_rgb, cls=True)
print("Raw Result:", result)
# Extract text from PaddleOCR result
if result and len(result[0]) > 0:
license_plate_text = " ".join([entry[1][0] for entry in result[0]]) # Extract text
print("🚗 Detected Plate:", license_plate_text)
# Store plate once per motorcycle
detected_plates[motorcycle] = license_plate_text
# Draw bounding box and text on original image
cv2.rectangle(image, (mx1 + px1, my1 + py1), (mx1 + px2, my1 + py2), COLOR_LICENSE_PLATE, 2)
cv2.putText(image, f"Plate: {license_plate_text}", (mx1 + px1, my1 + py1 - 10),
cv2.FONT_HERSHEY_SIMPLEX, 0.5, COLOR_LICENSE_PLATE, 2)
# 📁 Save processed image for single-image mode
os.makedirs(output_folder, exist_ok=True)
output_path = os.path.join(output_folder, f"processed_{image_name}")
cv2.imwrite(output_path, image)
# 🎥 Return processed frame for video
if is_video:
return image, license_plate_text
else:
return output_path, license_plate_text
if __name__ == "__main__":
app = QApplication([])
window = HelmetDetectionApp()
window.show()
app.exec()

BIN
models/helmetV5_1.pt Normal file

Binary file not shown.

Binary file not shown.

Binary file not shown.

Binary file not shown.

BIN
models/yolov8n.pt Normal file

Binary file not shown.

Binary file not shown.

After

Width:  |  Height:  |  Size: 973 KiB

BIN
output/processed_test21.jpg Normal file

Binary file not shown.

After

Width:  |  Height:  |  Size: 351 KiB

BIN
report.xlsx Normal file

Binary file not shown.

BIN
requirements.txt Normal file

Binary file not shown.