19 lines
1.2 KiB
HTML
19 lines
1.2 KiB
HTML
<html><head>
|
|
<meta http-equiv="content-type" content="text/html; charset=windows-1252"><style>#header + #content > #left > #rlblock_left,
|
|
#content > #right > .dose > .dosesingle,
|
|
#content > #center > .dose > .dosesingle
|
|
{display:none !important;}</style><style>img[src="http://s05.flagcounter.com/count/pTvk/bg=FFFFFF/txt=000000/border=CCCCCC/columns=6/maxflags=36/viewers=0/labels=0/"]
|
|
{display:none !important;}</style></head><body><h1>Real Op-Amps</h1>
|
|
The ideal op-amp element uses an ideal approximation to op-amp behavior. It has infinite <a href="https://en.wikipedia.org/wiki/Slew_rate">slew rate</a>
|
|
and output current.
|
|
<p>
|
|
The real op-amp element uses a subcircuit to emulate a real op-amp implementation with finite slew rate and output current. Presently,
|
|
the two implementation options are LM741 and LM324.
|
|
<p>
|
|
You can also modify the slew rate or output current, which will modify the circuit to change these values from the default.
|
|
<p>
|
|
These subcircuits are complicated, so you may run problems with convergence, especially if you increase the slew rate. Try decreasing
|
|
the time step size if this happens.
|
|
<p>
|
|
The LM324 can act very glitchy as well if the slew rate is increased. Decreasing the time step size proportionately should fix this.
|
|
</body></html>
|