new-plate/main.py

729 lines
27 KiB
Python
Raw Normal View History

2025-03-07 23:44:30 +05:30
import os
os.environ["PROTOCOL_BUFFERS_PYTHON_IMPLEMENTATION"] = "python" # To run Paddle OCR in python based protobuf implementation as it has dependency conflict with protobuf package
import cv2
import numpy as np
import pandas as pd
from ultralytics import YOLO
from PyQt6.QtWidgets import QApplication, QProgressBar, QLabel, QMenuBar, QMenu,QPushButton, QVBoxLayout, QWidget, QFileDialog, QMessageBox, QGroupBox, QHBoxLayout, QFrame
from PyQt6.QtGui import QPixmap,QAction, QImage
from PyQt6.QtCore import Qt, QThread, pyqtSignal
import mediapipe as mp
import time
from datetime import datetime
from openpyxl import load_workbook
from openpyxl.styles import Font, PatternFill, Alignment, Border, Side
from paddleocr import PaddleOCR
mp_face_detection = mp.solutions.face_detection
mp_drawing = mp.solutions.drawing_utils
IOU_THRESHOLD = 0.2 # Adjust based on your use case
BUFFER = 5 # Allows a small buffer for intersection calculation
FALLBACK_HEADBOX = 0.2
WIOU_THRESHOLD=0.3
MP_FACE_MODEL=0
MP_MIN_DETECTION_CONFIDENCE=0.5
CAMERA_SOURCE = 1 #Webcam / Camera Source REMEMBER WINDOWS HAS WEBCAM ACCESS ISSUES TO PYTHON
# Load YOLO models
motorcycle_model = YOLO("models/yolov8n.pt") # Pretrained COCO model (motorcycles)
helmet_model = YOLO("models/helmetYoloV8_25epochs.pt") # Custom helmet detection model
2025-03-08 20:50:54 +05:30
plate_model = YOLO("models/license_plate_detector1.pt") # Custom license plate detection model
2025-03-07 23:44:30 +05:30
# Initialize OCR
ocr = PaddleOCR(use_angle_cls=True, lang='en') # Angle correction enabled
# Define Colors
COLOR_MOTORCYCLE = (0, 255, 0) # Green
COLOR_NO_HELMET = (0, 0, 255) # Red
2025-03-08 20:50:54 +05:30
COLOR_LICENSE_PLATE = (255, 0, 0) # Blue
2025-03-07 23:44:30 +05:30
#Report Filepath
EXCEL_FILE = "report.xlsx"
def get_head_region(image, px1, py1, px2, py2):
""" Detects head region using Mediapipe Face Detection instead of assuming 20% height. """
with mp_face_detection.FaceDetection(MP_FACE_MODEL, MP_MIN_DETECTION_CONFIDENCE) as face_detection:
image_rgb = cv2.cvtColor(image, cv2.COLOR_BGR2RGB)
results = face_detection.process(image_rgb)
if results.detections:
for detection in results.detections:
bboxC = detection.location_data.relative_bounding_box
h, w, _ = image.shape
x1, y1, w_box, h_box = (
int(bboxC.xmin * w), int(bboxC.ymin * h),
int(bboxC.width * w), int(bboxC.height * h)
)
# Ensure the detected face is within the person bounding box
if x1 >= px1 and x1 + w_box <= px2 and y1 >= py1 and y1 + h_box <= py2:
return image[y1:y1 + h_box, x1:x1 + w_box] # Extract face region
# Fallback: Use the top 20% bounding box if no face is detected
head_y1 = py1
head_y2 = py1 + int((py2 - py1) * FALLBACK_HEADBOX)
return image[head_y1:head_y2, px1:px2]
def get_center(box):
"""Calculate the center of a bounding box."""
x1, y1, x2, y2 = box
return ((x1 + x2) // 2, (y1 + y2) // 2)
def iou(box1, box2):
"""Compute Intersection over Union (IoU) between two bounding boxes."""
x1, y1, x2, y2 = box1
x1g, y1g, x2g, y2g = box2
xi1 = max(x1, x1g) - BUFFER
yi1 = max(y1, y1g) - BUFFER
xi2 = min(x2, x2g) + BUFFER
yi2 = min(y2, y2g) + BUFFER
inter_area = max(0, xi2 - xi1) * max(0, yi2 - yi1)
box1_area = (x2 - x1) * (y2 - y1)
box2_area = (x2g - x1g) * (y2g - y1g)
# union_area = box1_area + box2_area - inter_area
union_area = min(box1_area, box2_area) # Normalize based on smaller object
return inter_area / union_area if union_area > 0 else 0
def aspect_ratio_similarity(box1, box2):
"""Compute Aspect Ratio Similarity (ARS) between two bounding boxes."""
x1, y1, x2, y2 = box1
x1g, y1g, x2g, y2g = box2
aspect_ratio1 = (x2 - x1) / (y2 - y1 + 1e-6) # Avoid division by zero
aspect_ratio2 = (x2g - x1g) / (y2g - y1g + 1e-6)
return min(aspect_ratio1, aspect_ratio2) / max(aspect_ratio1, aspect_ratio2) # Ratio similarity
def weighted_iou(box1, box2, alpha=0.7):
"""Compute Weighted IoU (WIoU) by combining IoU and Aspect Ratio Similarity."""
iou_score = iou(box1, box2)
ars_score = aspect_ratio_similarity(box1, box2)
return alpha * iou_score + (1 - alpha) * ars_score # Weighted combination
def associate_persons_with_motorcycles(persons, motorcycles, threshold , alpha=0.7):
"""Associate each detected person with the most relevant motorcycle using Weighted IoU."""
associations = {}
for person in persons:
best_match = None
best_score = 0 # WIoU score
for motorcycle in motorcycles:
wiou_score = weighted_iou(person, motorcycle, alpha)
if wiou_score > best_score:
best_score = wiou_score
best_match = motorcycle
# Apply Weighted IoU threshold
if best_match and best_score >= threshold:
associations[person] = best_match
return associations
class VideoProcessor(QThread):
frame_processed = pyqtSignal(np.ndarray)
def __init__(self, video_path, parent):
super().__init__()
self.video_path = video_path
self.parent = parent
self.running = True
def run(self):
self.parent.process_video(self.video_path)
class RealTimeProcessor(QThread):
frame_processed = pyqtSignal(np.ndarray)
def __init__(self, parent):
super().__init__()
self.parent = parent
self.running = True
def run(self):
cap = cv2.VideoCapture(CAMERA_SOURCE) # Open webcam
time.sleep(1.000)
if not cap.isOpened():
print("🔴 Error: Could not open webcam.")
return
while self.running:
ret, frame = cap.read()
if not ret:
print("⚠️ Frame not captured.")
break
# Process the frame
2025-03-08 20:50:54 +05:30
processed_frame, license_plate_text = self.parent.process_image(frame, is_video=True)
2025-03-07 23:44:30 +05:30
# Emit signal to update UI
self.frame_processed.emit(processed_frame)
cap.release()
def format_excel(file_path):
wb = load_workbook(file_path)
ws = wb.active
# Define styles
bold_font = Font(bold=True, color="FFFFFF") # White text
header_fill = PatternFill(start_color="4F81BD", end_color="4F81BD", fill_type="solid") # Blue background
center_alignment = Alignment(horizontal="center", vertical="center")
thin_border = Border(left=Side(style="thin"), right=Side(style="thin"),
top=Side(style="thin"), bottom=Side(style="thin"))
# Apply formatting to header row
for col in range(1, ws.max_column + 1):
cell = ws.cell(row=1, column=col)
cell.font = bold_font
cell.fill = header_fill
cell.alignment = center_alignment
# Apply formatting to all cells
for row in ws.iter_rows():
for cell in row:
cell.border = thin_border
cell.alignment = center_alignment
# Auto-adjust column widths
for col in ws.columns:
max_length = 0
col_letter = col[0].column_letter # Get column letter
for cell in col:
try:
if cell.value:
max_length = max(max_length, len(str(cell.value)))
except:
pass
ws.column_dimensions[col_letter].width = max_length + 2 # Add extra padding
# Save the formatted file
wb.save(file_path)
class HelmetDetectionApp(QWidget):
def __init__(self):
super().__init__()
# self.image_path = ""
self.processed_image_path = ""
self.license_plate_text = ""
self.media_path = ""
self.init_ui()
def init_ui(self):
self.setWindowTitle("Helmet Violation Detector")
self.setGeometry(200, 200, 950, 700) # More spacious UI
# Apply a modern dark theme with soft shadows and smooth UI
self.setStyleSheet("""
QWidget {
background-color: #181818;
color: #E0E0E0;
font-family: 'Arial';
}
QPushButton {
background-color: #1E88E5;
color: white;
padding: 12px;
border-radius: 10px;
font-size: 14px;
font-weight: bold;
transition: all 0.3s;
}
QPushButton:hover {
background-color: #1565C0;
transform: scale(1.05);
}
QPushButton:pressed {
background-color: #0D47A1;
}
QProgressBar {
border: 2px solid #1E88E5;
border-radius: 5px;
text-align: center;
background: #222;
}
QProgressBar::chunk {
background-color: #1E88E5;
width: 10px;
}
QLabel {
font-size: 14px;
font-weight: bold;
}
QMenuBar {
background-color: #333;
color: white;
padding: 6px;
}
QMenuBar::item {
background-color: transparent;
padding: 6px 12px;
}
QMenuBar::item:selected {
background-color: #1565C0;
}
QMenu {
background-color: #444;
color: white;
border: 1px solid #1565C0;
}
QMenu::item:selected {
background-color: #1565C0;
}
""")
layout = QVBoxLayout()
# 🌟 Top Menu Bar
menu_bar = QMenuBar(self)
# 📂 File Menu
file_menu = QMenu("📂 File", self)
upload_action = QAction("Upload Media", self)
upload_action.triggered.connect(self.upload_media)
exit_action = QAction("❌ Exit", self)
exit_action.triggered.connect(self.close)
file_menu.addAction(upload_action)
file_menu.addSeparator()
file_menu.addAction(exit_action)
# ❓ Help Menu
help_menu = QMenu("❓ Help", self)
about_action = QAction(" About", self)
about_action.triggered.connect(self.show_about)
help_menu.addAction(about_action)
# Add Menus to the Bar
menu_bar.addMenu(file_menu)
menu_bar.addMenu(help_menu)
layout.setMenuBar(menu_bar) # Attach to main window
# 🖼️ Image Display Frame
self.image_label = QLabel("Upload Media")
self.image_label.setAlignment(Qt.AlignmentFlag.AlignCenter)
self.image_label.setFrameShape(QFrame.Shape.Box)
self.image_label.setFrameShadow(QFrame.Shadow.Sunken)
self.image_label.setStyleSheet("""
background-color: #222;
border: 3px solid #1E88E5;
padding: 15px;
font-size: 18px;
font-weight: bold;
color: #BBDEFB;
border-radius: 8px;
""")
layout.addWidget(self.image_label)
# 📂 File Upload & Processing Section
file_group = QGroupBox("📂 Media Controls")
file_group.setStyleSheet("QGroupBox { font-weight: bold; font-size: 16px; }")
file_layout = QVBoxLayout()
upload_btn = QPushButton("📂 Upload Media")
upload_btn.clicked.connect(self.upload_media)
file_layout.addWidget(upload_btn)
analyze_btn = QPushButton("🔍 Analyze Media")
analyze_btn.clicked.connect(self.analyze_media)
file_layout.addWidget(analyze_btn)
report_btn = QPushButton("📊 Create Report")
report_btn.clicked.connect(self.create_report)
file_layout.addWidget(report_btn)
file_group.setLayout(file_layout)
layout.addWidget(file_group)
# 🎥 Real-Time Section
real_time_group = QGroupBox("🎥 Real-Time Detection")
real_time_group.setStyleSheet("QGroupBox { font-weight: bold; font-size: 16px; }")
real_time_layout = QHBoxLayout()
self.real_time_btn = QPushButton("🟢 START Real-Time Analysis")
self.real_time_btn.setCheckable(True) # Allow toggling
self.real_time_btn.clicked.connect(self.start_real_time)
real_time_layout.addWidget(self.real_time_btn)
real_time_group.setLayout(real_time_layout)
layout.addWidget(real_time_group)
# ⏳ Progress Bar for Video Processing
self.progress_bar = QProgressBar(self)
self.progress_bar.setTextVisible(True)
layout.addWidget(self.progress_bar)
self.setLayout(layout)
def show_about(self):
current_year = datetime.now().year # ✅ Get current year dynamically
about_msg = QMessageBox(self)
about_msg.setWindowTitle("🔍 About Helmet Violation Detector")
about_msg.setIcon(QMessageBox.Icon.Information) # ✅ Add an info icon
# 🎨 Rich HTML Styling for Professional Look
about_text = f"""
<h2 style='color:#1E88E5; text-align:center;'>Helmet Violation Detector</h2>
<p style='text-align:center; font-size:14px; color:#E0E0E0;'>
<b>Version:</b> 01.1<br>
<b>Developed by:</b> Bitmutex Technologies<br>
AI-powered safety monitoring solution
</p>
<hr>
<p style='text-align:center; color:#AAAAAA; font-size:12px;'>
© {current_year} Bitmutex Technologies. All rights reserved.
</p>
"""
about_msg.setText(about_text) # ✅ Set Rich Text
about_msg.setStandardButtons(QMessageBox.StandardButton.Ok) # ✅ Add OK Button
about_msg.exec() # ✅ Show the Dialog
def upload_media(self):
file_dialog = QFileDialog()
file_path, _ = file_dialog.getOpenFileName(self, "Select Image/Video", "",
"Images & Videos (*.png *.jpg *.jpeg *.mp4 *.avi *.mov)")
if file_path:
self.media_path = file_path
self.is_video = file_path.lower().endswith((".mp4", ".avi", ".mov"))
if self.is_video:
cap = cv2.VideoCapture(self.media_path)
ret, frame = cap.read()
cap.release()
if ret:
self.display_frame(frame)
else:
pixmap = QPixmap(self.media_path)
self.image_label.setPixmap(pixmap.scaled(600, 400))
def analyze_media(self):
if not self.media_path:
QMessageBox.warning(self, "Warning", "Please upload an image or video first.")
return
if self.is_video:
self.video_thread = VideoProcessor(self.media_path, self)
self.video_thread.start()
else:
self.processed_path, self.license_plate_text = self.process_image(self.media_path)
if self.processed_path:
pixmap = QPixmap(self.processed_path)
self.image_label.setPixmap(pixmap.scaled(600, 400))
def process_video(self, video_path, output_folder="output/"):
cap = cv2.VideoCapture(video_path)
output_video_path = os.path.join(output_folder, "processed_" + os.path.basename(video_path))
os.makedirs(output_folder, exist_ok=True)
fourcc = cv2.VideoWriter_fourcc(*'mp4v')
fps = int(cap.get(cv2.CAP_PROP_FPS))
width = int(cap.get(cv2.CAP_PROP_FRAME_WIDTH))
height = int(cap.get(cv2.CAP_PROP_FRAME_HEIGHT))
out = cv2.VideoWriter(output_video_path, fourcc, fps, (width, height))
frame_count = 0 # Track processed frames
total_frames = int(cap.get(cv2.CAP_PROP_FRAME_COUNT)) # Get total frames in video
while cap.isOpened():
ret, frame = cap.read()
if not ret:
print("🔴 No more frames to read. Exiting video processing loop.")
break
frame_count += 1
print(f"Processing frame {frame_count} / {total_frames}")
processed_frame, license_plate_text = self.process_image(frame, is_video=True)
if processed_frame is None:
print("⚠️ Skipping invalid frame.")
continue # Skip if processing failed
out.write(processed_frame) # Write processed frame to output video
# 🔄 Update progress bar
progress = int((frame_count / total_frames) * 100)
self.progress_bar.setValue(progress)
if frame_count >= total_frames:
print("✅ Processed all frames. Stopping.")
break # Ensure loop stops
#Save to Excel
self.save_to_excel(video_path, output_video_path, license_plate_text)
cap.release()
out.release()
QMessageBox.information(self, "Processing Complete", f"Processed video saved at {output_video_path}")
self.display_first_video_frame(output_video_path)
def display_frame(self, frame):
frame_rgb = cv2.cvtColor(frame, cv2.COLOR_BGR2RGB)
h, w, ch = frame_rgb.shape
bytes_per_line = ch * w
qimage = QImage(frame_rgb.data, w, h, bytes_per_line, QImage.Format.Format_RGB888)
pixmap = QPixmap.fromImage(qimage)
self.image_label.setPixmap(pixmap.scaled(600, 400))
def display_first_video_frame(self, video_path):
cap = cv2.VideoCapture(video_path)
ret, first_frame = cap.read()
cap.release()
if ret:
self.display_frame(first_frame)
def start_real_time(self):
"""Toggle real-time helmet detection from webcam."""
if hasattr(self, 'real_time_thread') and self.real_time_thread.isRunning():
# 🛑 Stop the real-time thread
self.real_time_thread.running = False
self.real_time_thread.quit()
self.real_time_thread.wait()
print("🔴 Stopped real-time detection.")
# 🔄 Update button to "START"
self.real_time_btn.setText("🟢 START Real-Time Analysis")
self.real_time_btn.setStyleSheet("background-color: #1E88E5; color: white;")
return
print("✅ Starting real-time detection...")
# 🟢 Start the real-time detection
self.real_time_thread = RealTimeProcessor(self)
self.real_time_thread.frame_processed.connect(self.display_frame)
self.real_time_thread.start()
# 🔄 Update button to "STOP"
self.real_time_btn.setText("🔴 STOP Real-Time Analysis")
self.real_time_btn.setStyleSheet("background-color: #D32F2F; color: white;")
def create_report(self):
if not self.license_plate_text:
QMessageBox.warning(self, "Warning", "No license plate detected yet!")
return
self.save_to_excel(self.media_path, self.processed_path ,self.license_plate_text)
os.system(f"start {EXCEL_FILE}") # Open Excel file (Windows)
QMessageBox.information(self, "Success", "Report saved and opened successfully.")
def save_to_excel(self, media_path_input, media_path_output, license_plate_text):
# Format the paths
output_full_path = os.path.abspath(media_path_output)
input_full_path = os.path.abspath(media_path_input)
input_dir = os.path.dirname(input_full_path) # Input path (without filename)
input_filename = os.path.basename(input_full_path) # Input filename
output_dir = os.path.dirname(output_full_path) # Output path (now absolute)
output_filename = os.path.basename(output_full_path) # Output filename
# Check if Excel file exists
if os.path.exists(EXCEL_FILE):
df = pd.read_excel(EXCEL_FILE, engine="openpyxl")
else:
df = pd.DataFrame(
columns=["Input Path", "Output Path", "Input Filename", "Output Filename", "License Plate Number"])
# Create new entry
new_entry = pd.DataFrame([[input_dir, output_dir, input_filename, output_filename, license_plate_text]],
columns=df.columns)
# Append to DataFrame
df = pd.concat([df, new_entry], ignore_index=True)
# Save to Excel
with pd.ExcelWriter(EXCEL_FILE, engine="openpyxl") as writer:
df.to_excel(writer, index=False)
# Format the Excel file
format_excel(EXCEL_FILE)
2025-03-08 20:50:54 +05:30
2025-03-07 23:44:30 +05:30
def process_image(self, image_path, is_video=False, output_folder="output/"):
# 🖼️ Handle video frames directly
if is_video:
image = image_path # Already a NumPy array (frame)
image_name = "frame.jpg" # Placeholder name for video frames
else:
image = cv2.imread(image_path)
if image is None:
print(f"Error: Could not read image {image_path}")
return None, ""
image_name = os.path.basename(image_path)
license_plate_text = self.license_plate_text
# 🏍️ Detect motorcycles and persons
motorcycle_results = motorcycle_model(image, conf=0.4, iou=0.5)
person_results = motorcycle_model(image, conf=0.3, iou=0.8)
motorcycles = []
persons = []
# 🚀 Extract motorcycle bounding boxes
for result in motorcycle_results:
for box in result.boxes:
x1, y1, x2, y2 = map(int, box.xyxy[0])
cls = int(box.cls[0].item())
if cls == 3: # Motorcycle class in COCO
motorcycles.append((x1, y1, x2, y2))
# 🚶 Extract person bounding boxes
for result in person_results:
for box in result.boxes:
x1, y1, x2, y2 = map(int, box.xyxy[0])
cls = int(box.cls[0].item())
if cls == 0: # Person class in COCO
persons.append((x1, y1, x2, y2))
# 🔗 Associate persons with motorcycles
associations = associate_persons_with_motorcycles(persons, motorcycles, WIOU_THRESHOLD)
detected_plates = {} # Store plates per motorcycle to prevent duplicate processing
for motorcycle in motorcycles:
mx1, my1, mx2, my2 = motorcycle
persons_on_motorcycle = [p for p, m in associations.items() if m == motorcycle]
if not persons_on_motorcycle:
print("⚠️ No person found on the motorcycle. Skipping...")
continue # 🚫 Skip if no person is found
# 🏍️ Detect helmet for each person ONCE per motorcycle
helmet_status = []
for person in persons_on_motorcycle:
px1, py1, px2, py2 = person
head_roi = get_head_region(image, px1, py1, px2, py2)
# Detect helmet
helmet_results = helmet_model(head_roi)
helmet_present = any(helmet_results[0].boxes)
helmet_status.append(helmet_present)
# 🖍️ Draw bounding box for person
color = COLOR_MOTORCYCLE if helmet_present else COLOR_NO_HELMET
cv2.rectangle(image, (px1, py1), (px2, py2), color, 3)
text = "Helmet On" if helmet_present else "No Helmet!"
cv2.putText(image, text, (px1, py1 - 10), cv2.FONT_HERSHEY_SIMPLEX, 0.6, color, 2)
# ✅ 🚫 **Skip if all persons have helmets**
if all(helmet_status):
print("✅ All persons have helmets. Skipping license plate detection...")
continue
# 🚗 License Plate Detection (only if at least one person has no helmet)
if motorcycle in detected_plates:
print("⚠️ License plate already detected for this motorcycle. Skipping duplicate detection...")
continue # 🚫 Skip duplicate processing
motorcycle_roi = image[my1:my2, mx1:mx2]
plate_results = plate_model(motorcycle_roi)
if not plate_results or not any(plate_results[0].boxes):
print("⚠️ No license plate found for this motorcycle. Skipping...")
continue # 🚫 Skip if no plate found
for plate_result in plate_results:
for plate_box in plate_result.boxes:
px1, py1, px2, py2 = map(int, plate_box.xyxy[0])
plate_roi = motorcycle_roi[py1:py2, px1:px2]
# Preprocess the license plate region
plate_roi_gray = cv2.cvtColor(plate_roi, cv2.COLOR_BGR2GRAY)
plate_roi_denoised = cv2.fastNlMeansDenoising(plate_roi_gray, h=10)
plate_roi_thresh = cv2.adaptiveThreshold(plate_roi_denoised, 255,
cv2.ADAPTIVE_THRESH_GAUSSIAN_C,
cv2.THRESH_BINARY, 11, 2)
plate_roi_resized = cv2.resize(plate_roi_thresh, None, fx=1.5, fy=1.5,
interpolation=cv2.INTER_CUBIC)
# Convert BGR to RGB (PaddleOCR expects RGB)
plate_roi_rgb = cv2.cvtColor(plate_roi_denoised, cv2.COLOR_GRAY2RGB)
2025-03-08 20:50:54 +05:30
2025-03-07 23:44:30 +05:30
# Perform OCR with PaddleOCR
result = ocr.ocr(plate_roi_rgb, cls=True)
print("Raw Result:", result)
2025-03-08 20:50:54 +05:30
# Perform OCR with PaddleOCR
result = ocr.ocr(plate_roi_rgb, cls=True)
print("Raw OCR Result:", result)
# Ensure result is valid
if result is None or not isinstance(result, list) or len(result) == 0:
print("⚠️ OCR result is None or empty!")
license_plate_text = "N/A" # Set default value
elif isinstance(result[0], list) and len(result[0]) > 0:
print("✅ OCR detected text.")
2025-03-07 23:44:30 +05:30
license_plate_text = " ".join([entry[1][0] for entry in result[0]]) # Extract text
print("🚗 Detected Plate:", license_plate_text)
# Store plate once per motorcycle
detected_plates[motorcycle] = license_plate_text
# Draw bounding box and text on original image
cv2.rectangle(image, (mx1 + px1, my1 + py1), (mx1 + px2, my1 + py2), COLOR_LICENSE_PLATE, 2)
cv2.putText(image, f"Plate: {license_plate_text}", (mx1 + px1, my1 + py1 - 10),
cv2.FONT_HERSHEY_SIMPLEX, 0.5, COLOR_LICENSE_PLATE, 2)
2025-03-08 20:50:54 +05:30
else:
print("⚠️ OCR result does not contain expected text format!")
license_plate_text = "N/A" # Set default value
2025-03-07 23:44:30 +05:30
# 📁 Save processed image for single-image mode
os.makedirs(output_folder, exist_ok=True)
output_path = os.path.join(output_folder, f"processed_{image_name}")
cv2.imwrite(output_path, image)
# 🎥 Return processed frame for video
if is_video:
return image, license_plate_text
else:
return output_path, license_plate_text
if __name__ == "__main__":
app = QApplication([])
window = HelmetDetectionApp()
window.show()
app.exec()